
 

 

 

Abstract—We propose a method for real-time blob detection 
in large images by exploiting parallelism

 
in computation which 

can be easily obtained in
 

a specialized
 

hardware
 

(multi-core 
platforms, FPGA, ASIC). In this method, image is divided into 
blocks of equal size

 
to which

 
a
 
maximally stable extremal regions

 

(MSER)
 
blob detector

 
is

 
applied in parallel.

 
Parallelism

 
provides 

a
 
great speed-up of the algorithm, but the system

 
is then unable

 

to detect
 

all blobs
 

detected by original MSER detection 
algorithm.

 
Our approach is

 
over

 
20

 
times more memory efficient 

than original algorithm if large images are processed due to 
processing of smaller image blocks.

 
Although it has some 

limitations, this method can find its place
 
in

 
many applications 

like
 
medical imaging if the real time performance is needed, as 

well as in the
 
video surveillance or

 
in wide area motion imagery

 

(WAMI). Since there is often need for image registration and 
alignment in these applications, we explored possibilities to use 
detected blobs for feature-based image alignment

 
as well. 

 
 

Index Terms—real-time blob detection, maximally stable 
extremal regions, parallelism, video surveillance, image 
alignment. 

 
 

I.
 

INTRODUCTION

 

IN
 
computer vision, term blob is usually used for certain 

regions in an image that possess
 

some distinguishing 
properties

 
(e.g. brightness or color)

 
compared to surrounding 

regions. Detection of these so-called blobs is often one of the 
basic parts of many image analysis systems. For some cases, 
blobs are already objects that we want to detect (e.g. some 
particles, cells in medical imaging, characters in text 
recognition

 
etc.). In other cases, when it is impossible to 

determine whether detected blob is a desirable object
 
by

 
using

 

simple detection,
 

detected regions are usually an input to 
another stage of the object detection algorithm (e.g. moving 
car detection and tracking in video surveillance applications). 
Detected blobs

 
are

 
also

 
frequently used as distinctive image 

features
 

for image matching together with SIFT, SURF, 
BRIEF or other descriptors.

 
Many of these applications 

require real-time performance which can be achieved
 

in 
software

 
only on high processing power platforms.

 
Therefore, 

for embedded systems, there is a need for novel detection 
algorithms or parallelization

 
of existing ones.

 

Some of the well known blob detection approaches
 
are

 
the

 

Laplacian of Gaussian, the difference of Gaussians and the 
determinant of Hessian approach including their affine

 
and 

hybrid
 
versions. Nowadays, one of the

 
most common

 
methods  
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for blob detection is method of maximally
 
stable extremal 

regions (MSER)
 
[1].

 
The MSER detection algorithm operates 

on the input image directly without any filtering which makes 
it able to detect both fine and coarse blobs. It is used in 
applications such as cell detection in medical imaging

 
[2], 

automatic 3D-reconstruction from a set of images
 
[3], feature 

detection and matching
 

[4], or in automated surveillance 
systems for object detection and tracking

 
[5].

  

The MSER detector
 
is, like many other feature detectors, 

computationally intensive, hence it is not easy to achieve a 
real-time implementation of the algorithm.

 
State of the art 

FPGA implementation has a
 
real-time performance, but only 

for images up to 350 × 350 pixels [6].
 

Recent ASIC 
implementation has better performance, but at the high clock 
rate [7]. At the same operating frequency as in [6], this 
implementation has similar

 
expected

 
performance.

 

We propose an algorithm for blob detection which uses 
MSER detector from [6], but applied to blocks of the divided 
input image in parallel.

 
By exploiting parallelism, we 

achieved a great speed-up of the detection algorithm. Since 
we use significantly smaller blocks of an image for 
calculation than the image itself, a processing memory

 
cost is 

significantly reduced. 
 
Limitation

 
of this approach is inability 

to detect blobs whose size is larger than block size and,
 
for 

some applications,
 
large blobs at borders of blocks, but we 

believe that this method can be used in many applications.
 

In the next section, we briefly describe a MSER detection 
algorithm and its FPGA implementation from [6]

 
which is 

used as a reference for this work. Section III presents a 
method for parallel image processing and analysis of 
performance and memory

 
usage

 
which is a main contribution 

of the paper. In section IV we present some possible 
applications of this approach and use detected MSER regions 
for feature-based image alignment.

 
Finally, we summarize our 

results
 
and

 
give conclusions and proposals for further work in 

section V.
 

II.
 

MAXIMALLY STABLE EXTREMAL REGIONS

 

A.
 

Definition of maximally stable extremal regions
 

In this paper
 
we consider that an image I

 
is a set of pixels 

that take
 

brightness
 

values from 0 to 255.
 

If we apply a 
threshold [ ]255

 
,0∈t

 
to an image I, we get a binary image as 

the result of the calculation:
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In this binary image, we can see a set of connected regions
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that are called extremal regions. As we increase the threshold, 
these regions are divided into multiple smaller extremal 
regions from which we can create a component tree as shown 
in Fig. 1. Each node of the tree represents a connected region 

t
jR  whose size is t

jR (|.| denotes cardinality of a set, i.e. 

number of pixels in the region), where j is a number of the 
region, and t is the threshold at which this region exists. We 
can observe a region Rj at different threshold values by 
looking at one branch of a component tree. For the region t

jR , 

we define a stability factor ( )tq  as 
 

( )
t
j

t
j

t
j

R

RR
tq

∆+∆− −
=                           (2) 

 
where Δ is a parameter of the method. The region is 
maximally stable if the stability factor ( )tq  has a local 
minimum at t*. This analysis applies to detection of bright 
regions on dark background. It is easy to obtain dark regions 
in bright background if we invert the input image I = 255 − I. 
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Fig. 1.  A part of the regions tree for determining maximally stable extremal 
regions, for an example image in upper left corner. A complete regions tree 
contains regions for all possible thresholds. 

B. Implementation of MSER algorithm 
Algorithm for MSER detection can be divided into three 

basic stages. First one is preprocessing. At this stage the 
intensity level histogram of an image is calculated and pixels 
are sorted by intensity. The sorting is done by using a bin sort 
algorithm [8], since it is very efficient if the intensity level 
histogram is known before the sorting starts. Second stage is 
clustering at which representation of all regions at each 
threshold is created. This is done by using the Union-find 
algorithm [8] which is used to keep track of regions of 
connected pixels. The final stage is tracking sizes of regions 
and their stability factors. Local minimums of stability factor 
determine maximally stable extremal regions.  

As a reference design, in this paper we use an 
implementation of MSER algorithm described in [6]. At the 
beginning of the processing, the pixels are sorted. If the image 

has N pixels, positions of sorted pixels are written to the N-
entry memory where each entry has N2log  bits. When 
sorting is finished, each pixel in the image is processed in a 
sorted order. The algorithm uses a memory which is called 
Region Map (RM). The region map has N memory locations 
too. Each memory location has three numbers that are used to 
keep track which pixels are added to which region, which 
pixels belong to a single region and which pixels are already 
processed. The first number is called union-find number (U). 
If this number is equal to 0 it means that the pixel is not 
connected to any other pixel or that the pixel has not yet been 
processed. If U > 0, the pixel is part of the same region as the 
pixel at position U. Finally, if U < 0, the pixel is a reference 
point of the region and 1 – U is the region size (number of 
pixels in the region). U is a N2log1+  bits long word. 

A single bit is added to each region map location and it is 
an indicator that shows if the pixel is processed or not. 

In order to speed-up determining which pixels belong to the 
region with the reference point at location p, every region has 
a linked list of pixels in that region. This means that each 
entry in the region map has additional log2N-bit number which 
is a pointer to the next pixel in the list.  

An example of adding a pixel at level t = i – Δ − 1 to a 
region map is shown in Fig. 2. When processing a pixel, we 
check right, up, left and down neighboring pixels. If the 
neighbor belongs to an existing region (U > 0 or U < 0) we 
add the current pixel to that region. Otherwise, we check if the 
neighbor is already processed. If it is not, that means that the 
it has lower value than the current pixel and it is therefore 
skipped. If it is processed, a new region is made from the 
current processing pixel and the neighboring pixel. The 
example in Fig. 2. shows the most complex situation when a 
single pixel causes merging of two regions. 
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Fig. 2.  A region map (RM) for union-find operations. Each RM memory 
location represents one pixel. The large middle number in each memory 
location is the union-find number (U). The number in upper right corner is a 
pixel address, and the number in lower right corner is indicator that shows 
whether the pixel is processed (1) or not (0). Number in lower left corner is an 
address of the next pixel in linked list of a connected region. The example 
here (taken from [6]) shows processing of a pixel at position 7 whose 
intensity is i – Δ − 1. The upper left image shows an RM at intensity i. 
Initially the pixel at position 7 is added to the region on the right due to first 
neighbor check at right side. After the neighbor check at left side, the two 
regions merge since the processing pixel needs to be added to both of the 
neighboring regions. In case we need the region pixels at threshold t = i, the 
first links are bypassed, like it is shown in lower right image. 



 

In order to keep track of sizes of connected regions, a hash 
indexed memory is used. Whenever all pixels from one 
intensity level have been processed, the size of all regions that 
grew is updated in this memory. Sizes for a region jR  are 
kept only for intensity levels from t – Δ – 1 to t + Δ + 1, since 
these intensity levels are needed for calculation of stability 
factors ( )1−tq , ( )tq  and ( )1+tq . If these three stability 
factors are known, we can check if the ( )tq  is a local 

minimum. If it is a local minimum, then a region t
jR  is a 

maximally stable extremal region. For further details about 
the implementation, please refer to [6]. 

III. PARALLELISM FOR DETECTION SPEED-UP AND REDUCED 
MEMORY COST  

In this section we propose a system for real-time detection 
of MSER blobs with reduced memory cost. Note that we 
tested the algorithm in software and have done a performance 
and memory cost analysis, but we leave the FPGA or ASIC 
implementation for future work.  

A. System description 
A block diagram of the proposed system is shown in Fig. 3. 

The system contains M independent MSER detectors 
described in section II.B. Inputs to each detector are image 
blocks that can be overlapping or non-overlapping (Fig. 4.). 
As the image stream is being read from the camera or some 
local memory, the controller of image read gets the pixels data 
for a number of lines and writes them to M image block 
memories. MSER detectors use the data from these memories 
for processing while the controller writes next lines in second 
set of M memories. When the processing of first set of  
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Fig. 3.  A block diagram of proposed system 

memories is finished, MSER detectors use a second set of 
memories as an input. Now, the controller again writes new 
set of data to first set of memories etc.   

When a new MSER is detected, MSER detector sends the 
pixel positions of the new MSER to the collector of 
detections. Depending on the application, the collector can use 
this new detection for post processing, reject it or just bypass 
it to the other system that uses detected blobs via the outer 
world interface.  
 

With overlapping

Without overlapping
 

Fig. 4.  Two types of image partitioning: with overlapping of processing 
blocks and without overlapping of processing blocks 

 
When we use non-overlapping image partitioning, for many 

applications there is a chance that a single region positioned at 
the block border is divided and detected as two or more 
neighboring regions (Fig. 5.). Some of these border detections 
could be false detections too. This is why we sometimes 
should use image partitioning with overlapping for detection 
of small objects and reject all border detections, but the 
method can then skip some detections. This is a limitation that 
is not crucial for applications shown in section IV. 

B. Merging of border regions when the type of object is 
known 

In medical imaging MSER detection is commonly used for 
cell detection. Cells are usually light or dark blobs on the 
uniform background, therefore all MSER detections in this 
kind of images refer to cells [2]. In situations like this, we can 
use non-overlapping image partitioning, detect multiple 
 

 
Fig. 5.  Connecting of border detections into one region. Red dots represent 
centroids of the regions. 



 

regions parts in multiple blocks and then merge these parts 
into one region. 

In order to do this, we use a resultant memory bitmap 
whose capacity is N bits. Each bit represents one pixel in the 
input image and is set if that pixel is part of any detected 
MSER. During detection in the MSER detector, we keep 
information whether the detected MSER is the MSER at the 
border of the block and forward that information together with 
the region pixels to collector of detections. If the detected 
MSER is the MSER at the block border, the collector of 
detections checks in the resultant bitmap if there is a detected 
MSER in the neighboring block. If this is true, the current 
MSER is merged with the neighboring one. The neighboring 
region is determined by finding the shortest Euclidean 
distance between current region and the regions in the 
neighboring block.  

Merging of border regions allows us to detect almost all 
possible blobs for some applications.  

C. Performance analysis     
Since we have not implemented the algorithm on any target 

platform (FPGA, GPU, ASIC), yet only in software, we base 
our analysis on the performance analysis from [6].  

Based on the analysis from section II.B, the needed 
memory cost for image storing and implementation of the 
MSER detection in an N-pixel image is approximately  
MMSER = Mimage + Msort + Mregion_map + Mresult_bitmap = 8N + 
Nlog2N + N(1+1+log2N+log2N) + N = (11+3log2N)N bits [6]. 
According to that, the needed memory cost for one block 
processing is MMSER_block ≈ (10+3log2Nblock)Nblock, where Nblock 
is number of pixels in one block. Note that now we have 
number 10 inside the brackets, since in [6], N bits are needed 
for the resultant memory which we need too. If the image is 
squared (we take it as squared for simplicity), then a number 
of processing blocks is   1+= blockNNPBnum , if there 

is no overlapping and ( )  1+−= olblock wNNPBnum , 
where wol is the width of overlapping strip. Therefore, a total 
memory cost is 

( )

( )  ( )⋅+⋅++≈
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log310

1log310
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Execution time of the MSER detection in [6] is 

approximated to texe ≈ 10NTCLK, where TCLK is a clock period, 
but the algorithm only detects either bright or dark regions. In 
order to detect both the bright and the dark regions, we need 
texe ≈ 20NTCLK. Since we process PBnum blocks in parallel, the 
approximated execution time of our approach is 

 

 ( )blockblockCLKCLKblockexe NNNTPBnumTNt +⋅≈= 2020 .  (4) 
 
We summarize our estimations in TABLE I and compare 

them to the state of the art FPGA and ASIC implementations 

from [6] and [7]. The execution time and memory cost is 
greater when blocks are overlapping, but there is still 
significantly large reduction of both performance parameters. 

 
TABLE I 

PERFORMANCE COMPARISON WITH STATE OF THE ART MSER DETECTOR 
HARDWARE IMPLEMENTATIONS FOR SQUARED IMAGE 

 
Performance 

Metric FPGA [6] ASIC [7] 
(expected) This work (expected) 

MSER 
regions 

Either bright 
or dark 

Bright and 
dark Bright and dark 

All MSER 
regions? Yes Yes No 

Processing 
memory cost 
(bits, approx.) 

N(11+3log2N) N(9+2log2N) 
N+(10+3log2Nblock)∙ 

∙(⌊(N blockN)1/2⌋+Nblock) 

Execution 
time ≈10NTCLK ≈10NTCLK 

≈20TCLK ∙ 
∙(⌊(N blockN)1/2⌋+Nblock) 

For: N=1536×1536 and Nblock = 64×64 ⇒ PBnum = 24 
Memory cost: 176 Mbits 121 Mbits 7.07 Mbits 
Frame rate: 
fCLK = 50 MHz 2.12 fps 2.12 fps 25 fps 
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Fig. 6.  Processing memory cost depending on resolution of an input image 
for reference designs from [6] and [7] and for our approach where 
Nblock = 64×64. 
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Fig. 7.  Approximated frame rate depending on resolution of an input image 
for reference designs from [6] and [7] and for our approach. The execution 
time is approximated for detection of both the bright and the dark regions. 
 

Additional comparison with implementations from [6] and 
[7] are shown in Fig. 6. and in Fig. 7. Fig. 6. shows extremely 
high memory cost efficiency of our approach comparing to the 
referenced MSER detection implementations. Fig. 7. shows 
comparison of frame rate for different resolutions of an input 



 

image. As we can see from the table and figures, if the block 
size is Nblock = 64×64, we can achieve the real-time 
performance for maximal image resolution Nmax = 1536×1536, 
when detecting both the bright and dark regions. Note that if 
we detect only bright or only dark regions, we can achieve 
much higher frame rate. Likewise, the memory cost for the 
maximal image resolution is reduced about 25 times 
compared to [6] and about 17 times compared to [7]. 

IV. APPLICATIONS IN VIDEO SURVEILLANCE AND IMAGE 
ALIGNMENT 

As we mentioned before, maximally stable extremal 
regions detection is used in video surveillance and in wide 
area motion imagery (WAMI). An example of one frame from 
wide area motion imagery, taken for tracking large number of 
vehicles, is shown in Fig. 8. As we can notice, the image 
covers large area and vehicles are small objects. Hence, we 
see that our approach can have applications in this area. 

 

 
Fig. 8.  Wide area motion imagery frame example. Red circles represent 
detected maximally stable extremal regions which refer to vehicles. Example 
is taken from [5]. 
 

 Since there is often need for image registration and 
alignment in this area, we explored possibilities to use non-

moving detected blobs for feature-based image alignment as 
well. This can be very convenient, since we can spare time for 
feature detection in feature-based alignment, by taking already 
detected blobs for image features. We just need to select non-
moving features for alignment. 

We were not able to get usable WAMI data, hence for 
image alignment test we used multiple images taken on the 
ground by DSLR camera in burst mode.  

Feature-based image alignment [9] is done in several 
stages: feature detection, feature description, feature 
matching, finding a geometric relationship between two 
images based on matched features and finally geometric 
transformation of the second image to align it with the first 
one. Feature detection is already done by detecting blobs 
using the proposed design (Fig. 9.). To demonstrate that our 
features can be used for this application, we apply the SURF 
descriptor [10] to each detected region in both images. After 
extraction of SURF features, the matching is done and pairs of 
matched features in first and second image are formed. 
Matched MSER/SURF features in two images are shown in 
Fig. 10.  

 

 
Fig. 9.  Detected MSER features in example image 

 
 

 

 matched points 1
matched points 2

 
Fig. 10.  Matched MSER/SURF features of original and shifted image used for feature-based image alignment. Note that there are some false detections, but that 
most of them are correct.  



 

After the feature matching is done, a geometric 
relationship between two images is estimated by using M-
estimator SAmple Consensus (MSAC) algorithm described 
in [11]. Second image is then transformed using the 
estimated geometric transformation. 

In order to determine the quality of the alignment, for 
quality metric, we choose the mean squared error of all 
pixels in the aligned second image as compared to the pixels 
in first image: 

  

                    ( ) ( )( )∑
=

−=
N

p
aligned pIpI

N
MSE

1

2
1,2

1 .             (5) 

 
For the example shown in Fig. 9. and Fig. 10, the initial 

mean squared error of non-aligned images is equal to 
MSEoriginal = 83.5181. After the feature-based alignment is 
done (with MSER detection from this paper, with block size 
Nblock = 64×64 and with overlapping strips of 8 pixels wide), 
we get the mean squared error MSEaligned = 9.9. The 
differences between non-aligned images and between 
aligned images are shown in Fig. 11. and Fig. 12. We 
compared the MSE when detection is done using our 
approach and when the detection is done by conventional 
MSER detection algorithm and we could not see any 
differences in alignment results except those that are caused 
by statistical properties of MSAC algorithm. We noticed 
that the MSE starts to increase if the overlapping strips are 
narrower since the number of detected MSER features 
strongly decreases. 

 

 
Fig. 11.  The difference between non-aligned images I1 − I2 

 

 
Fig. 12.  The difference between aligned images I1 − I2,aligned 

 

V. CONCLUSION 
In this paper we have shown that for some applications 

the MSER blob detector can be implemented with 
significantly reduced memory cost and with greater speed 
performance. We gave examples in medical imaging, wide 
are motion imagery and in feature detection for feature-
based image alignment, but we believe that with proper 
setting of parameters (size of a block, Nblock, and overlapping 
strip width, wol, at first) this approach can be used in many 
applications. The algorithm provides a space for 
compromise between accuracy and number of detected 
regions, at one side, and memory cost and execution speed, 
at the other side.  

In future work we plan to implement our parallel 
algorithm on an FPGA platform and explore more 
possibilities and new applications of this approach. 
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