

Abstract—We propose a method for real-time blob detection
in large images by exploiting parallelism

in computation which

can be easily obtained in

a specialized

hardware

(multi-core
platforms, FPGA, ASIC). In this method, image is divided into
blocks of equal size

to which

a

maximally stable extremal regions

(MSER)

blob detector

is

applied in parallel.

Parallelism

provides

a

great speed-up of the algorithm, but the system

is then unable

to detect

all blobs

detected by original MSER detection
algorithm.

Our approach is

over

20

times more memory efficient

than original algorithm if large images are processed due to
processing of smaller image blocks.

Although it has some

limitations, this method can find its place

in

many applications

like

medical imaging if the real time performance is needed, as

well as in the

video surveillance or

in wide area motion imagery

(WAMI). Since there is often need for image registration and
alignment in these applications, we explored possibilities to use
detected blobs for feature-based image alignment

as well.

Index Terms—real-time blob detection, maximally stable
extremal regions, parallelism, video surveillance, image
alignment.

I.

INTRODUCTION

IN

computer vision, term blob is usually used for certain

regions in an image that possess

some distinguishing
properties

(e.g. brightness or color)

compared to surrounding

regions. Detection of these so-called blobs is often one of the
basic parts of many image analysis systems. For some cases,
blobs are already objects that we want to detect (e.g. some
particles, cells in medical imaging, characters in text
recognition

etc.). In other cases, when it is impossible to

determine whether detected blob is a desirable object

by

using

simple detection,

detected regions are usually an input to
another stage of the object detection algorithm (e.g. moving
car detection and tracking in video surveillance applications).
Detected blobs

are

also

frequently used as distinctive image

features

for image matching together with SIFT, SURF,
BRIEF or other descriptors.

Many of these applications

require real-time performance which can be achieved

in
software

only on high processing power platforms.

Therefore,

for embedded systems, there is a need for novel detection
algorithms or parallelization

of existing ones.

Some of the well known blob detection approaches

are

the

Laplacian of Gaussian, the difference of Gaussians and the
determinant of Hessian approach including their affine

and

hybrid

versions. Nowadays, one of the

most common

methods

Vladimir

Petrović

(petrovicv@etf.rs)

and Jelena Popović-Božović

(jelena@etf.rs)

are

with the School of Electrical Engineering, University of
Belgrade, 73 Bulevar kralja Aleksandra, 11020 Belgrade, Serbia.

for blob detection is method of maximally

stable extremal

regions (MSER)

[1].

The MSER detection algorithm operates

on the input image directly without any filtering which makes
it able to detect both fine and coarse blobs. It is used in
applications such as cell detection in medical imaging

[2],

automatic 3D-reconstruction from a set of images

[3], feature

detection and matching

[4], or in automated surveillance
systems for object detection and tracking

[5].

The MSER detector

is, like many other feature detectors,

computationally intensive, hence it is not easy to achieve a
real-time implementation of the algorithm.

State of the art

FPGA implementation has a

real-time performance, but only

for images up to 350 × 350 pixels [6].

Recent ASIC
implementation has better performance, but at the high clock
rate [7]. At the same operating frequency as in [6], this
implementation has similar

expected

performance.

We propose an algorithm for blob detection which uses
MSER detector from [6], but applied to blocks of the divided
input image in parallel.

By exploiting parallelism, we

achieved a great speed-up of the detection algorithm. Since
we use significantly smaller blocks of an image for
calculation than the image itself, a processing memory

cost is

significantly reduced.

Limitation

of this approach is inability

to detect blobs whose size is larger than block size and,

for

some applications,

large blobs at borders of blocks, but we

believe that this method can be used in many applications.

In the next section, we briefly describe a MSER detection
algorithm and its FPGA implementation from [6]

which is

used as a reference for this work. Section III presents a
method for parallel image processing and analysis of
performance and memory

usage

which is a main contribution

of the paper. In section IV we present some possible
applications of this approach and use detected MSER regions
for feature-based image alignment.

Finally, we summarize our

results

and

give conclusions and proposals for further work in

section V.

II.

MAXIMALLY STABLE EXTREMAL REGIONS

A.

Definition of maximally stable extremal regions

In this paper

we consider that an image I

is a set of pixels

that take

brightness

values from 0 to 255.

If we apply a
threshold []255

,0∈t

to an image I, we get a binary image as

the result of the calculation:





<
≥

=

tI
tI

I t
bin ,0

,1
.

(1)

In this binary image, we can see a set of connected regions

Towards Real-Time Blob Detection in Large
Images with Reduced Memory Cost

Vladimir Petrović and Jelena Popović-Božović, Member, IEEE

Best Young Researcher's Paper Award

Proceedings of 3rd International Conference on Electrical, Electronic and Computing Engineering
IcETRAN 2016, Zlatibor, Serbia, June 13 – 16, 2016, ISBN 978-86-7466-618-0

pp. EKI2.2.1-6

that are called extremal regions. As we increase the threshold,
these regions are divided into multiple smaller extremal
regions from which we can create a component tree as shown
in Fig. 1. Each node of the tree represents a connected region

t
jR whose size is t

jR (|.| denotes cardinality of a set, i.e.

number of pixels in the region), where j is a number of the
region, and t is the threshold at which this region exists. We
can observe a region Rj at different threshold values by
looking at one branch of a component tree. For the region t

jR ,

we define a stability factor ()tq as

()
t
j

t
j

t
j

R

RR
tq

∆+∆− −
= (2)

where Δ is a parameter of the method. The region is
maximally stable if the stability factor ()tq has a local
minimum at t*. This analysis applies to detection of bright
regions on dark background. It is easy to obtain dark regions
in bright background if we invert the input image I = 255 − I.

t = 10

t = 40

t = 70

t = 100

t = 130

R1
t = 10

R2
t = 40 R3

t = 40

R4
70 R3

70R5
70 R6

70

R3
100R6

100

R6
130

R5
100

R5
130

R4
100

Fig. 1. A part of the regions tree for determining maximally stable extremal
regions, for an example image in upper left corner. A complete regions tree
contains regions for all possible thresholds.

B. Implementation of MSER algorithm
Algorithm for MSER detection can be divided into three

basic stages. First one is preprocessing. At this stage the
intensity level histogram of an image is calculated and pixels
are sorted by intensity. The sorting is done by using a bin sort
algorithm [8], since it is very efficient if the intensity level
histogram is known before the sorting starts. Second stage is
clustering at which representation of all regions at each
threshold is created. This is done by using the Union-find
algorithm [8] which is used to keep track of regions of
connected pixels. The final stage is tracking sizes of regions
and their stability factors. Local minimums of stability factor
determine maximally stable extremal regions.

As a reference design, in this paper we use an
implementation of MSER algorithm described in [6]. At the
beginning of the processing, the pixels are sorted. If the image

has N pixels, positions of sorted pixels are written to the N-
entry memory where each entry has N2log bits. When
sorting is finished, each pixel in the image is processed in a
sorted order. The algorithm uses a memory which is called
Region Map (RM). The region map has N memory locations
too. Each memory location has three numbers that are used to
keep track which pixels are added to which region, which
pixels belong to a single region and which pixels are already
processed. The first number is called union-find number (U).
If this number is equal to 0 it means that the pixel is not
connected to any other pixel or that the pixel has not yet been
processed. If U > 0, the pixel is part of the same region as the
pixel at position U. Finally, if U < 0, the pixel is a reference
point of the region and 1 – U is the region size (number of
pixels in the region). U is a N2log1+ bits long word.

A single bit is added to each region map location and it is
an indicator that shows if the pixel is processed or not.

In order to speed-up determining which pixels belong to the
region with the reference point at location p, every region has
a linked list of pixels in that region. This means that each
entry in the region map has additional log2N-bit number which
is a pointer to the next pixel in the list.

An example of adding a pixel at level t = i – Δ − 1 to a
region map is shown in Fig. 2. When processing a pixel, we
check right, up, left and down neighboring pixels. If the
neighbor belongs to an existing region (U > 0 or U < 0) we
add the current pixel to that region. Otherwise, we check if the
neighbor is already processed. If it is not, that means that the
it has lower value than the current pixel and it is therefore
skipped. If it is processed, a new region is made from the
current processing pixel and the neighboring pixel. The
example in Fig. 2. shows the most complex situation when a
single pixel causes merging of two regions.

3

-5

3

30 6

6 -4

3

3

0

0

06 6
0

13

9

4

14

8

11 12

3

6 7

10

1 2

5
1

1

1

1

1

1

1 0

1

1 0

0

1 0

1

1

14

4

3

9

13

5 0

8

11 0

0

6 0

0

3

-6

3

30 6

6 -4

3

3

0

3

06 6
0

13

9

4

14

8

11 12

3

6 7

10

1 2

5
1

1

1

1

1

1

1 0

1

1 0

0

1 0

1

1

14

4

3

9

13

5 0

7

11 8

0

6 0

0

3

-11

3

30 6

6 3

3

3

0

3

06 6
0

13

9

4

14

8

11 12

3

6 7

10

1 2

5
1

1

1

1

1

1

1 0

1

1 1

0

1 0

1

1

14

4

3

9

13

5 0

11

7 8

0

6 0

0

3

-11

3

30 6

6 3

3

3

0

3

06 6
0

13

9

4

14

8

11 12

3

6 7

10

1 2

5
1

1

1

1

1

1

1 0

1

1 1

0

1 0

1

1

14

4

3

9

13

5 0

11

7 8

0

6 0

0

Fig. 2. A region map (RM) for union-find operations. Each RM memory
location represents one pixel. The large middle number in each memory
location is the union-find number (U). The number in upper right corner is a
pixel address, and the number in lower right corner is indicator that shows
whether the pixel is processed (1) or not (0). Number in lower left corner is an
address of the next pixel in linked list of a connected region. The example
here (taken from [6]) shows processing of a pixel at position 7 whose
intensity is i – Δ − 1. The upper left image shows an RM at intensity i.
Initially the pixel at position 7 is added to the region on the right due to first
neighbor check at right side. After the neighbor check at left side, the two
regions merge since the processing pixel needs to be added to both of the
neighboring regions. In case we need the region pixels at threshold t = i, the
first links are bypassed, like it is shown in lower right image.

In order to keep track of sizes of connected regions, a hash
indexed memory is used. Whenever all pixels from one
intensity level have been processed, the size of all regions that
grew is updated in this memory. Sizes for a region jR are
kept only for intensity levels from t – Δ – 1 to t + Δ + 1, since
these intensity levels are needed for calculation of stability
factors ()1−tq , ()tq and ()1+tq . If these three stability
factors are known, we can check if the ()tq is a local

minimum. If it is a local minimum, then a region t
jR is a

maximally stable extremal region. For further details about
the implementation, please refer to [6].

III. PARALLELISM FOR DETECTION SPEED-UP AND REDUCED
MEMORY COST

In this section we propose a system for real-time detection
of MSER blobs with reduced memory cost. Note that we
tested the algorithm in software and have done a performance
and memory cost analysis, but we leave the FPGA or ASIC
implementation for future work.

A. System description
A block diagram of the proposed system is shown in Fig. 3.

The system contains M independent MSER detectors
described in section II.B. Inputs to each detector are image
blocks that can be overlapping or non-overlapping (Fig. 4.).
As the image stream is being read from the camera or some
local memory, the controller of image read gets the pixels data
for a number of lines and writes them to M image block
memories. MSER detectors use the data from these memories
for processing while the controller writes next lines in second
set of M memories. When the processing of first set of

Controller of image read

Camera/memory interface

Interface to 1st block of memories

М11

Interface to 2nd block of memories

М12 М1M М21 М22 М2M

MSER
detector

1

MSER
detector

2

MSER
detector

M

Collector of detections

Outer world
interface

Resultant memory bitmap
(optional)

Fig. 3. A block diagram of proposed system

memories is finished, MSER detectors use a second set of
memories as an input. Now, the controller again writes new
set of data to first set of memories etc.

When a new MSER is detected, MSER detector sends the
pixel positions of the new MSER to the collector of
detections. Depending on the application, the collector can use
this new detection for post processing, reject it or just bypass
it to the other system that uses detected blobs via the outer
world interface.

With overlapping

Without overlapping

Fig. 4. Two types of image partitioning: with overlapping of processing
blocks and without overlapping of processing blocks

When we use non-overlapping image partitioning, for many

applications there is a chance that a single region positioned at
the block border is divided and detected as two or more
neighboring regions (Fig. 5.). Some of these border detections
could be false detections too. This is why we sometimes
should use image partitioning with overlapping for detection
of small objects and reject all border detections, but the
method can then skip some detections. This is a limitation that
is not crucial for applications shown in section IV.

B. Merging of border regions when the type of object is
known

In medical imaging MSER detection is commonly used for
cell detection. Cells are usually light or dark blobs on the
uniform background, therefore all MSER detections in this
kind of images refer to cells [2]. In situations like this, we can
use non-overlapping image partitioning, detect multiple

Fig. 5. Connecting of border detections into one region. Red dots represent
centroids of the regions.

regions parts in multiple blocks and then merge these parts
into one region.

In order to do this, we use a resultant memory bitmap
whose capacity is N bits. Each bit represents one pixel in the
input image and is set if that pixel is part of any detected
MSER. During detection in the MSER detector, we keep
information whether the detected MSER is the MSER at the
border of the block and forward that information together with
the region pixels to collector of detections. If the detected
MSER is the MSER at the block border, the collector of
detections checks in the resultant bitmap if there is a detected
MSER in the neighboring block. If this is true, the current
MSER is merged with the neighboring one. The neighboring
region is determined by finding the shortest Euclidean
distance between current region and the regions in the
neighboring block.

Merging of border regions allows us to detect almost all
possible blobs for some applications.

C. Performance analysis
Since we have not implemented the algorithm on any target

platform (FPGA, GPU, ASIC), yet only in software, we base
our analysis on the performance analysis from [6].

Based on the analysis from section II.B, the needed
memory cost for image storing and implementation of the
MSER detection in an N-pixel image is approximately
MMSER = Mimage + Msort + Mregion_map + Mresult_bitmap = 8N +
Nlog2N + N(1+1+log2N+log2N) + N = (11+3log2N)N bits [6].
According to that, the needed memory cost for one block
processing is MMSER_block ≈ (10+3log2Nblock)Nblock, where Nblock
is number of pixels in one block. Note that now we have
number 10 inside the brackets, since in [6], N bits are needed
for the resultant memory which we need too. If the image is
squared (we take it as squared for simplicity), then a number
of processing blocks is   1+= blockNNPBnum , if there

is no overlapping and ()  1+−= olblock wNNPBnum ,
where wol is the width of overlapping strip. Therefore, a total
memory cost is

()

()  ()⋅+⋅++≈

≈












+












++=

blockblockblock

block
blockblocktotMSER

NNNNN

N
NNNNM

2

2,

log310

1log310
 (3)

Execution time of the MSER detection in [6] is

approximated to texe ≈ 10NTCLK, where TCLK is a clock period,
but the algorithm only detects either bright or dark regions. In
order to detect both the bright and the dark regions, we need
texe ≈ 20NTCLK. Since we process PBnum blocks in parallel, the
approximated execution time of our approach is

 ()blockblockCLKCLKblockexe NNNTPBnumTNt +⋅≈= 2020 . (4)

We summarize our estimations in TABLE I and compare

them to the state of the art FPGA and ASIC implementations

from [6] and [7]. The execution time and memory cost is
greater when blocks are overlapping, but there is still
significantly large reduction of both performance parameters.

TABLE I

PERFORMANCE COMPARISON WITH STATE OF THE ART MSER DETECTOR
HARDWARE IMPLEMENTATIONS FOR SQUARED IMAGE

Performance

Metric FPGA [6] ASIC [7]
(expected) This work (expected)

MSER
regions

Either bright
or dark

Bright and
dark Bright and dark

All MSER
regions? Yes Yes No

Processing
memory cost
(bits, approx.)

N(11+3log2N) N(9+2log2N)
N+(10+3log2Nblock)∙

∙(⌊(N blockN)1/2⌋+Nblock)

Execution
time ≈10NTCLK ≈10NTCLK

≈20TCLK ∙
∙(⌊(N blockN)1/2⌋+Nblock)

For: N=1536×1536 and Nblock = 64×64 ⇒ PBnum = 24
Memory cost: 176 Mbits 121 Mbits 7.07 Mbits
Frame rate:
fCLK = 50 MHz 2.12 fps 2.12 fps 25 fps

0 0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

200

250

300

Resolution (megapixels)

P
ro

ce
ss

in
g

m
em

or
y

co
st

 (M
bi

ts
)

FPGA [6]
ASIC [7]
This work

Fig. 6. Processing memory cost depending on resolution of an input image
for reference designs from [6] and [7] and for our approach where
Nblock = 64×64.

0.5 1 1.5 2 2.5 3 3.5 4
0

50

100

150

Resolution (megapixels)

Fr
am

e
ra

te
 (f

ps
)

FPGA [6]
ASIC [7]
This work

Fig. 7. Approximated frame rate depending on resolution of an input image
for reference designs from [6] and [7] and for our approach. The execution
time is approximated for detection of both the bright and the dark regions.

Additional comparison with implementations from [6] and
[7] are shown in Fig. 6. and in Fig. 7. Fig. 6. shows extremely
high memory cost efficiency of our approach comparing to the
referenced MSER detection implementations. Fig. 7. shows
comparison of frame rate for different resolutions of an input

image. As we can see from the table and figures, if the block
size is Nblock = 64×64, we can achieve the real-time
performance for maximal image resolution Nmax = 1536×1536,
when detecting both the bright and dark regions. Note that if
we detect only bright or only dark regions, we can achieve
much higher frame rate. Likewise, the memory cost for the
maximal image resolution is reduced about 25 times
compared to [6] and about 17 times compared to [7].

IV. APPLICATIONS IN VIDEO SURVEILLANCE AND IMAGE
ALIGNMENT

As we mentioned before, maximally stable extremal
regions detection is used in video surveillance and in wide
area motion imagery (WAMI). An example of one frame from
wide area motion imagery, taken for tracking large number of
vehicles, is shown in Fig. 8. As we can notice, the image
covers large area and vehicles are small objects. Hence, we
see that our approach can have applications in this area.

Fig. 8. Wide area motion imagery frame example. Red circles represent
detected maximally stable extremal regions which refer to vehicles. Example
is taken from [5].

 Since there is often need for image registration and
alignment in this area, we explored possibilities to use non-

moving detected blobs for feature-based image alignment as
well. This can be very convenient, since we can spare time for
feature detection in feature-based alignment, by taking already
detected blobs for image features. We just need to select non-
moving features for alignment.

We were not able to get usable WAMI data, hence for
image alignment test we used multiple images taken on the
ground by DSLR camera in burst mode.

Feature-based image alignment [9] is done in several
stages: feature detection, feature description, feature
matching, finding a geometric relationship between two
images based on matched features and finally geometric
transformation of the second image to align it with the first
one. Feature detection is already done by detecting blobs
using the proposed design (Fig. 9.). To demonstrate that our
features can be used for this application, we apply the SURF
descriptor [10] to each detected region in both images. After
extraction of SURF features, the matching is done and pairs of
matched features in first and second image are formed.
Matched MSER/SURF features in two images are shown in
Fig. 10.

Fig. 9. Detected MSER features in example image

 matched points 1
matched points 2

Fig. 10. Matched MSER/SURF features of original and shifted image used for feature-based image alignment. Note that there are some false detections, but that
most of them are correct.

After the feature matching is done, a geometric
relationship between two images is estimated by using M-
estimator SAmple Consensus (MSAC) algorithm described
in [11]. Second image is then transformed using the
estimated geometric transformation.

In order to determine the quality of the alignment, for
quality metric, we choose the mean squared error of all
pixels in the aligned second image as compared to the pixels
in first image:

 () ()()∑
=

−=
N

p
aligned pIpI

N
MSE

1

2
1,2

1 . (5)

For the example shown in Fig. 9. and Fig. 10, the initial

mean squared error of non-aligned images is equal to
MSEoriginal = 83.5181. After the feature-based alignment is
done (with MSER detection from this paper, with block size
Nblock = 64×64 and with overlapping strips of 8 pixels wide),
we get the mean squared error MSEaligned = 9.9. The
differences between non-aligned images and between
aligned images are shown in Fig. 11. and Fig. 12. We
compared the MSE when detection is done using our
approach and when the detection is done by conventional
MSER detection algorithm and we could not see any
differences in alignment results except those that are caused
by statistical properties of MSAC algorithm. We noticed
that the MSE starts to increase if the overlapping strips are
narrower since the number of detected MSER features
strongly decreases.

Fig. 11. The difference between non-aligned images I1 − I2

Fig. 12. The difference between aligned images I1 − I2,aligned

V. CONCLUSION
In this paper we have shown that for some applications

the MSER blob detector can be implemented with
significantly reduced memory cost and with greater speed
performance. We gave examples in medical imaging, wide
are motion imagery and in feature detection for feature-
based image alignment, but we believe that with proper
setting of parameters (size of a block, Nblock, and overlapping
strip width, wol, at first) this approach can be used in many
applications. The algorithm provides a space for
compromise between accuracy and number of detected
regions, at one side, and memory cost and execution speed,
at the other side.

In future work we plan to implement our parallel
algorithm on an FPGA platform and explore more
possibilities and new applications of this approach.

ACKNOWLEDGMENT
We would like to thank Dragomir El Mezeni from School

of Electrical Engineering, University of Belgrade and Prof.
Dejan Marković and Dejan Rozgić from University of
California, Los Angeles for useful suggestions and
comments.

REFERENCES

[1] J. Matas, O. Chum, M. Urban, and T. Pajdla, “Robust Wide-Baseline

Stereo from Maximally Stable Extremal Regions” in Proc. British
Machine Vision Conference (BMVC), London, UK, vol. 22, pp. 761–
767, September, 2004.

[2] C. Arteta, V. Lemptisky, J. A. Noble, and A. Zisserman, “Learning to
Detect Cells Using Non-overlapping Extremal Regions” in Proc.
International Conference on Medical Image Computing and
Computer-Assisted Intervention (MICCAI), Nice, France, pp. 348–
356, October, 2012.

[3] D. Martinec and T. Pajdla, “Consistent Multi-View Reconstruction
from Epipolar Geometries with Outliers.” in Proc. of Scandinavian
Conference on Image Analysis (SCIA), Halmstad, Sweden, pp. 493–
500, June 2003.

[4] R. Kimmel, C. Zhang, A. Bronstein, and M. Bronstein, “Are MSER
Featuers Really Interesting?”, IEEE Transactions on Pattern Analysis
and Machine Intelligence, vol. 33, no. 11, pp. 2316-2320, September,
2011.

[5] S. Varah and N. Grujic, “Target Detection and Tracking Using a
Parallel Implementation of Maximally Stable Extremal Region”,
NVIDIA GTC Conference, San Jose, USA, March, 2013.

[6] F. Kristensen and W. J. MacLean, “Real-time extraction of maximally
stable extremal regions on an FPGA”, Proc. of IEEE International
Symposium on Circuits and Systems, New Orleans, USA, pp. 165–
168, May, 2007.

[7] E. Salahat, H. Saleh, A. Sluzek, M. Al-Qutayri, B. Mohammad, and
M. Ismail, “A Maximally Stable Extremal Regions System-on-Chip
For Real-Time Visual Surveillance”, Proc. of 41st Anual Conference
of the IEEE Industrial Electronics Society (IECON), Yokohama,
Japan, November, 2015.

[8] R. Sedgewick and K. D. Wayne, Algorithms, 4th ed. Upper Saddle
River, NJ, USA, Addison-Wesley, 2011.

[9] R. Szeliski, “Image alignment and stiching: a tutorial”, Foundations
and Trends® in Computer Graphics and Vision, vol. 2, no. 1, pp. 1 -
104, January, 2006.

[10] H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-Up Robust
Features (SURF)”, Computer Vision and Image Understanding, vol.
110, no. 3, pp. 346-359, June, 2008.

[11] P. H. S. Torr and A. Zisserman, “MLESAC: A New Robust Estimator
with Application to Estimating Image Geometry”, Computer Vision
and Image Understanding, vol. 78, no. 1, pp. 138-156, April, 2000.

	I. Introduction
	II. Maximally stable extremal regions
	A. Definition of maximally stable extremal regions
	B. Implementation of MSER algorithm

	III. Parallelism for detection speed-up and reduced memory cost
	A. System description
	B. Merging of border regions when the type of object is known
	C. Performance analysis

	IV. Applications in video surveillance and image alignment
	V. Conclusion

